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Radar backscatter can contain information about water in 

soils, however tracking soil moisture patters using 

satellite based instruments is difficult due to infrequent 

imaging and the strong effects of speckle which require 

spatial aggregation in order to extract soil moisture 

information.  By calibrating a land surface model (LSM) 

to backscatter image data it may be possible to temporally 

track soil moisture behavior between overpasses (figure 1 

top), however the amount of aggregation necessary to 

account for speckle reduces the spatial information 

density beyond what is acceptable for some applications 

when extracting information from a single image.  Since 

the LSM provides correlation between soil moisture 

values at different times, via knowledge of atmospheric 

and other forcing conditions, it may be possible to exploit 

this correlation (figure 1 bottom) to reduce the spatial 

aggregation necessary for extracting soil moisture 

information from a backscatter image series.  

A likelihood measure is developed for estimating the 

information carrying parameter in a speckle model which 

can simultaneously consider samples from both a 

homogenous area in a single backscatter image and in 

many images of a homogenous area over time.  Although 

the information carrying parameter changes with changes 

in soil moisture - and thus between images - the LSM will 

track these changes using knowledge of precipitation and 

abstractions.  Since the information carrying parameter in 

a backscatter image can be directly related to soil 

moisture  a LSM  which provides a time series of 

theoretical backscatter behavior related to soil moisture 

estimations (figure 2) can by calibrated to raw image data 

by maximizing this likelihood function.
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Mapping Parameter Requirement

Spatial Resolution 10 to 100 m

Vertical resolution Root zone, 15 cm to >1 m 15 cm to > 1 m; Root Zone

Spatial Coverage 1000  to 25000 km2

Quantization 3–4 levels, ranging from dry to very wet

Accuracy Moderate, ~75%

Product delivery Upon request to within 3–4 days of request

Study Site and Simulation Period Results

NOAH Calibration Using Soil Moisture Data

Calibration to TDR Measurements at Every Time Step 

Using a MSE Objective Function:

Time Series Comparison

To TDR Measurements

Chosen Parameter Location

In a Normalized Range

Histogram of Residuals 

at Every Time Step

Calibration to TDR Measurements at Image Times

Using a MSE Objective Function:

Time Series Comparison

To TDR Measurements

Chosen Parameter Location

In a Normalized Range

Histogram of Residuals 

at Every Time Step

Calibration to Soil Moisture Derived From Images

Using a MSE Objective Function (87.5 m ⨉ 87.5 m):

Time Series Comparison

To TDR Measurements
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Histogram of Residuals 

at Every Time Step

Calibration Using the Likelihood Objective Function 

(87.5 m ⨉ 87.5 m):

Time Series Comparison

To TDR Measurements
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Histogram of Residuals 

at Every Time Step

Area 

(m)

Calibration 

Method

MSE All Times MSE Images 

Times

Bias 95% 

Confidence 

VWC 

Difference

TDR All 2.982 2.504 -0.043 3.125

TDR at Image 

Times

3.825 -0.076 3.584

62.5 Likelihood 255.549 325.343 119.444 24.734

62.5 MSE 404.783 515.737 159.522 29.176

87.5 Likelihood 5.853 3.752 -14.790 4.780

87.5 MSE 9.728 6.885 -19.409 5.678

112.5 Likelihood 8.583 5.592 -17.909 6.565

112.5 MSE 7.545 5.499 -17.405 5.499

Walnut Gulch Experimental Watershed 

Kendall Station
 USDA operated

 Semi-arid, light vegetation, sandy soils

 Meteorological flux station provides 9 years recorded 

data at 20 minute intervals

 Time Domain Reflectometry (TDR) soil moisture 

probes provide 4 years of recorded data at 20 minute 

intervals

Conclusion

At small scales likelihood calibration comparing modeled and 

measured backscatter across multiple images reduces the 

effect of speckle noise on the objective function space as 

compared to assimilating image-derived soil moisture 

directly.  This allows an automatic search algorithm to find 

the ‘correct’ minimizing region in the parameter space by 

reducing the gravity of local minimum caused by noisy 

observations.  However, there is a point at which the 

homogeneity assumption fails when larger areas are 

considered and both types of parameter estimation procedures 

produce inferior results when  compared to point-based TDR 

data.

In addition, while accuracy and precision requirements for 

soil moisture estimation can be met using a model calibration 

approach this approach suffers when using satellite imagery 

as calibration data due to the fact that satellite overpasses 

cannot capture the range of behaviors of the hydrologic 

system and thus do not contain information about all 

hydrologic processes.  For example, in this demonstration  

peak soil moisture values are often grossly overestimated 

because no imagery in our collection captures surface 

behavior directly after or during a rainfall event.

Imagery

Model Calibration

Figure 3: Kendall Vegetation, 2005

Simulation Period 
 Mar. 9 – Sep. 6, 2004 

 81 day warm-up period

 Performance statistics 

collected May30 – Sep. 6

during the fall monsoon 

season.

Goodman’s Speckle Model:

I is the observed  backscatter intensity at a 

given location and time, s is the mean 

intensity over a homogeneous target, and n is 

the speckle effect.

Since the mean speckle effect is zero s will be the 

theoretical non-speckled backscatter value for the target. 

Let I = {Ij | ∀j} where {j} are image pixels of a 

homogenous target and S = {st |  ∀t} where {t} are 

image times

Likelihood Estimator for s Time Series:

Table 3: Calibration result statistics as compared to TDR measurements 

assuming different sized (square) homogenous areas.
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Table 1: Standardized soil moisture product requirements for watershed 

scale applications.

The Committee on Watershed Management has outlined a 

set of target accuracy and precision requirements for soil 

moisture information retrieval (table 1).   

Figure 1: 

Top - Continuous 

modeled SM (black 

line) fit to observed 

data (red dots)

Bottom - Modeled 

response follows most 

likely path through 

uncertain data. 

Model calibration (figure 2) involves identifying model 

parameters which induce model behavior which is most 

closely related to observed system behavior thus providing 

for maximally accurate predictions of past behavior which, 

in theory, will correspond to maximally 

accurate future predictions.  

Figure 2: Schematic for                        

. likelihood calibration of a soil 

moisture model.  The land surface 

model used is NCEP’s NOAH soil 

column simulator and backscatter is 

derived from soil moisture via the 

integral equation backscatter model 

(Fung, 1992)

Date Time Instrument Pixel 

Dimension

Incidence 

Angle

Wavelength Polarization

June 9 10:16 ENVISAT 12.5 m 41.08o 5.6 cm VV

July 14 10:16 ENVISAT 12.5 m 41.08o 5.6 cm VV

Aug 2 10:16 ENVISAT 12.5 m 37.39o 5.6 cm VV

Aug 7 RADARSAT 12.5 m 35.93o 5.6 cm HH

Aug 17 RADARSAT 12.5 m 46.48o 5.6 cm HH

Table 2: Summary of radar imagery available for this study.  All imagery was 

obtained with 3 looks in 2004.

Surface roughness characteristics of the imaged land surface 

was needed in order to extract moisture information.  This 

was obtained using the method of Rahman et al., 2008 which 

uses multiple radar images at different viewing angles to 

differentiate the effects of roughness and dielectric constant 

information.  This method requires knowledge of desiccated 

state soil moisture content for the area as well as an image of 

the environment at a dry point. 

Surface Roughness Characterization


